

 Next

BinderHub

Note

BinderHub is under active development and subject to breaking changes.

Getting started

The primary goal of BinderHub is creating custom computing environments that
can be used by many remote users. BinderHub enables an end user to easily
specify a desired computing environment from a GitHub repo. BinderHub then
serves the custom computing environment at a URL which users can access
remotely.

This guide assists you, an administrator, through the process of setting up
your BinderHub deployment.

To get started creating your own BinderHub, start with Create your cloud resources.

Note

BinderHub uses a JupyterHub running on Kubernetes for much of its functionality.
For information on setting up and customizing your JupyterHub, we recommend reading
the Zero to JupyterHub Guide [https://zero-to-jupyterhub.readthedocs.io/en/latest/index.html#customization-guide].

BinderHub Deployments

Our directory of BinderHubs is published at BinderHub Deployments.

If your BinderHub deployment is not listed, please
open an issue [https://github.com/jupyterhub/binderhub/issues]
to discuss adding it.

Zero to BinderHub

A guide to help you create your own BinderHub from scratch.

Zero to BinderHub

	1. Create your cloud resources
	1.1. Setting up Kubernetes on Google Cloud

	1.2. Install Helm

	2. Set up the container registry
	2.1. Set up Google Container Registry

	2.2. Set up Docker Hub registry

	2.3. Next step

	3. Set up BinderHub
	3.1. Preparing to install

	3.2. Create secret.yaml file

	3.3. Create config.yaml

	3.4. Install BinderHub

	3.5. Connect BinderHub and JupyterHub

	3.6. Try out your BinderHub Deployment

	3.7. Increase your GitHub API limit

	4. Tear down your Binder deployment
	4.1. Contracting the size of your cluster

	4.2. Deleting the cluster

Customization and deployment information

Information on how to customize your BinderHub as well as explore what others
in the community have done.

Customization and deployment

	Debugging BinderHub
	Changing the helm chart

	Customizing your BinderHub deployment

	BinderHub Deployments
	GESIS - Leibniz-Institute for the Social Sciences

	Pangeo - A community platform for big data geoscience

BinderHub Developer and Architecture Documentation

A more detailed overview of the BinderHub design, architecture, and functionality.

Developer and architecture docs

	The BinderHub Architecture
	Tools used by BinderHub

	What happens when a user clicks a Binder link?

	A diagram of the BinderHub architecture

	Event Logging
	Events vs Metrics

	What events to emit?

	BinderHub API Documentation
	Endpoint

	Provider

	Events

	Heartbeat

	Configuration and Source Code Reference
	app

	build

	builder

	main

	registry

	repoproviders

 1. Create your cloud resources

 Previous
 Next

1. Create your cloud resources

BinderHub is built to run on top of Kubernetes, a distributed cluster manager.
It uses a JupyterHub to launch/manage user servers, as well as a
docker registry to cache images.

To create your own BinderHub, you’ll first need to set up a properly
configured Kubernetes Cluster on the cloud, and then configure the
various components correctly. The following instructions will assist you
in doing so.

Note

BinderHub uses a JupyterHub running on Kubernetes for much of its functionality.
For information on setting up and customizing your JupyterHub, we recommend reading
the Zero to JupyterHub Guide [https://zero-to-jupyterhub.readthedocs.io/en/latest/index.html#customization-guide].

1.1. Setting up Kubernetes on Google Cloud [https://cloud.google.com/]

Note

BinderHub is built to be cloud agnostic, and can run on various cloud
providers (as well as bare metal). However, here we only provide
instructions for Google Cloud as it has been the most extensively-tested.
If you would like to help with adding instructions for other cloud
providers, please contact us [https://github.com/jupyterhub/binderhub/issues]!

1.2. Install Helm

Helm [https://helm.sh/], the package manager for Kubernetes, is a useful tool
for: installing, upgrading and managing applications on a Kubernetes cluster.
Helm packages are called charts.
We will be installing and managing JupyterHub on
our Kubernetes cluster using a Helm chart.

Helm has two parts: a client (helm) and a server (tiller). Tiller runs
inside of your Kubernetes cluster as a pod in the kube-system namespace. Tiller
manages both, the releases (installations) and revisions (versions) of charts deployed
on the cluster. When you run helm commands, your local Helm client sends
instructions to tiller in the cluster that in turn make the requested changes.

1.2.1. Installation

While several methods to install Helm [https://github.com/kubernetes/helm/blob/master/docs/install.md] exists, the
simplest way to install Helm is to run Helm’s installer script in a terminal:

curl https://raw.githubusercontent.com/kubernetes/helm/master/scripts/get | bash

1.2.2. Initialization

After installing helm on your machine, initialize Helm on your Kubernetes
cluster:

	Set up a ServiceAccount [https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/]
for use by tiller.

kubectl --namespace kube-system create serviceaccount tiller

	Give the ServiceAccount full permissions to manage the cluster.

Note

While most clusters have RBAC enabled and you need this line, you must
skip this step if your Kubernetes cluster does not have RBAC enabled.

kubectl create clusterrolebinding tiller --clusterrole cluster-admin --serviceaccount=kube-system:tiller

See our RBAC documentation for more information.

	Initialize helm and tiller.

helm init --service-account tiller

This command only needs to run once per Kubernetes cluster, it will create a
tiller deployment in the kube-system namespace and setup your local helm
client.

Note

If you wish to install helm on another computer, you won’t need to setup
tiller again but you still need to initialize helm:

helm init --client-only

1.2.3. Verify

You can verify that you have the correct version and that it installed properly
by running:

helm version

It should in less then a minute, when tiller on the cluster is ready, be able
to provide output like below. Make sure you have at least version 2.11.0 and that
the client (helm) and server version (tiller) is matching!

Client: &version.Version{SemVer:"v2.11.0", GitCommit:"2e55dbe1fdb5fdb96b75ff144a339489417b146b", GitTreeState:"clean"}
Server: &version.Version{SemVer:"v2.11.0", GitCommit:"2e55dbe1fdb5fdb96b75ff144a339489417b146b", GitTreeState:"clean"}

Note

If you wish to upgrade the server component of Helm running on the cluster
(tiller):

helm init --upgrade --service-account tiller

1.2.4. Secure Helm

Ensure that tiller is secure [https://engineering.bitnami.com/articles/helm-security.html] from access inside the cluster:

kubectl patch deployment tiller-deploy --namespace=kube-system --type=json --patch='[{"op": "add", "path": "/spec/template/spec/containers/0/command", "value": ["/tiller", "--listen=localhost:44134"]}]'

Now that you’ve installed Kubernetes and Helm, it’s time to Set up the container registry.

 BinderHub
 2. Set up the container registry

 Previous
 Next

2. Set up the container registry

BinderHub will build Docker images out of Git repositories, and then push
them to a Docker registry so that JupyterHub can launch user servers based
on these images. You can use any registry that
you like, though this guide covers how to properly configure two popular
registries: the Google Container Registry (gcr.io) and DockerHub
(hub.docker.com).

2.1. Set up Google Container Registry

To use Google Container Registry, you’ll need to provide BinderHub
with proper credentials so it can push images. You can do so by creating a
service account that has authorization to push to Google Container Registry:

	Go to console.cloud.google.com [http://console.cloud.google.com]

	Make sure your project is selected

	Click <top-left menu w/ three horizontal bars> -> IAM & Admin -> Service Accounts menu option

	Click Create service account

	Give your account a descriptive name such as “binderhub-builder”

	Click Role -> Storage -> Storage Admin menu option

	Check Furnish new private key

	Leave key type as default of JSON

	Click Create

These steps will download a JSON file to your computer. The JSON file
contains the password that can be used to push Docker images to the gcr.io
registry.

Warning

Don’t share the contents of this JSON file with anyone. It can be used to
gain access to your google cloud account!

Important

Make sure to store this JSON file as you cannot generate a second one
without re-doing the steps above.

2.2. Set up Docker Hub registry

To use Docker Hub as a registry first you have to create a
Docker ID account [https://docs.docker.com/docker-id/]
in Docker Hub [https://hub.docker.com/]. Your
Docker ID (username) and password are used to push Docker images to the registry.

If you want to store Docker images under an organization, you can
create an organization [https://docs.docker.com/docker-hub/orgs/].
This is useful if different Binder instances want to use same registry to store images.

See the next section for how to properly configure your BinderHub to use
Docker Hub.

2.3. Next step

Now that our cloud resources are set up, it’s time to Set up BinderHub.

 1. Create your cloud resources
 3. Set up BinderHub

 Previous
 Next

3. Set up BinderHub

BinderHub uses Helm Charts to set up the applications we’ll use in our Binder
deployment. If you’re curious about what Helm Charts are and how they’re
used here, see the Zero to JupyterHub guide [https://zero-to-jupyterhub.readthedocs.io/en/latest/tools.html#helm].

Below we’ll cover how to configure your Helm Chart, and how to create your
BinderHub deployment.

3.1. Preparing to install

To configure the Helm Chart we’ll need to generate several pieces of
information and insert them into yaml files.

First we’ll create a folder where we’ll store our BinderHub configuration
files. You can do so with the following commands:

mkdir binderhub
cd binderhub

Now we’ll collect the information we need to deploy our BinderHub.
The first is the content of the JSON file created when we set up
the container registry. For more information on getting a registry password, see
Set up the container registry. We’ll copy/paste the contents of this file in the steps
below.

Create two random tokens by running the following commands then copying the
outputs.:

openssl rand -hex 32
openssl rand -hex 32

Note

This command is run twice because we need two different tokens.

3.2. Create secret.yaml file

Create a file called secret.yaml and add the following:

jupyterhub:
 hub:
 services:
 binder:
 apiToken: "<output of FIRST `openssl rand -hex 32` command>"
 proxy:
 secretToken: "<output of SECOND `openssl rand -hex 32` command>"

Next, we’ll configure this file to connect with our registry.

3.2.1. If you are using gcr.io

Add the information needed to connect with the registry to secret.yaml.
You’ll need the content in the JSON file that was created when we created
our gcr.io registry account. Below we show the structure of the YAML you
need to insert. Note that the first line is not indented at all:

registry:
 url: https://gcr.io
 # below is the content of the JSON file downloaded earlier for the container registry from Service Accounts
 # it will look something like the following (with actual values instead of empty strings)
 # paste the content after `password: |` below
 password: |
 {
 "type": "<REPLACE>",
 "project_id": "<REPLACE>",
 "private_key_id": "<REPLACE>",
 "private_key": "<REPLACE>",
 "client_email": "<REPLACE>",
 "client_id": "<REPLACE>",
 "auth_uri": "<REPLACE>",
 "token_uri": "<REPLACE>",
 "auth_provider_x509_cert_url": "<REPLACE>",
 "client_x509_cert_url": "<REPLACE>"
 }

Tip

	The content you put just after password: | must all line up at the same
tab level.

	Don’t forget the | after the password: label.

3.2.2. If you are using Docker Hub

Update secret.yaml by entering the following:

registry:
 username: <docker-id>
 password: <password>

Note

	``<docker-id>`` and ``<password>`` are your credentials to login to Docker Hub.
If you use an organization to store your Docker images, this account must be a member of it.

3.3. Create config.yaml

Create a file called config.yaml and choose the following directions based
on the registry you are using.

3.3.1. If you are using gcr.io

To configure BinderHub to use gcr.io, simply add the following to
your config.yaml file:

config:
 BinderHub:
 use_registry: true
 image_prefix: gcr.io/<google-project-id>/<prefix>-

Note

	``<google-project-id>`` can be found in the JSON file that you
pasted above. It is the text that is in the project_id field. This is
the project ID, which may be different from the project name.

	``<prefix>`` can be any string, and will be prepended to image names. We
recommend something descriptive such as binder-dev- or binder-prod- (ending with a - is useful).

3.3.2. If you are using Docker Hub

Update config.yaml by entering the following:

config:
 BinderHub:
 use_registry: true
 image_prefix: <docker-id|organization-name>/<prefix>-

Note

	``<docker-id|organization-name>`` is where you want to store Docker images.
This can be your Docker ID account or an organization that your account belongs to.

	``<prefix>`` can be any string, and will be prepended to image names. We
recommend something descriptive such as binder-dev- or binder-prod-
(ending with a - is useful).

3.3.3. If you are using a custom registry

Authenticating with a Docker registry is slightly more complicated.
BinderHub knows how to talk to gcr.io and DockerHub,
but if you are using another registry, you will have to provide more information, in the form of two different urls:

	registry url (added to docker/config.json)

	token url for authenticating access to the registry

First, setup the docker configuration with the host used for authentication:

registry:
 url: "https://myregistry.io"
 username: xxx
 password: yyy

This creates a docker config.json used to check for images in the registry
and push builds to it.

Second, you will need to instruct BinderHub about the token URL:

config:
 BinderHub:
 use_registry: true
 image_prefix: "your-registry.io/<prefix>-"
 DockerRegistry:
 token_url: "https://myregistry.io/v2/token?service="

Note

There is one additional URL to set in the unlikely event that docker config.json
must use a different URL to refer to a registry than the registry’s actual url.
If this is the case, registry.url at the top-level
must match DockerRegistry.auth_config_url:

registry:
 url: "https://"

It’s not clear that this can ever be the case for custom registries,
however it is the case for DockerHub:

registry:
 url: "https://index.docker.io/v1"
config:
 DockerRegistry:
 url: "https://registry.hub.docker.com" # the actual v2 registry url
 auth_config_url: "https://index.docker.io/v1" # must match above!
 token_url: "https://auth.docker.io/token?service=registry.docker.io"

however, BinderHub is aware of DockerHub’s peculiarities
and can handle these without any additional configuration
beyond registry.url.

3.4. Install BinderHub

First, get the latest helm chart for BinderHub.:

helm repo add jupyterhub https://jupyterhub.github.io/helm-chart
helm repo update

Next, install the Helm Chart using the configuration files
that you’ve just created. Do this by running the following command:

helm install jupyterhub/binderhub --version=0.1.0-... --name=<choose-name> --namespace=<choose-namespace> -f secret.yaml -f config.yaml

where ... is the commit hash of the binderhub chart version you wish to deploy.

Note

	--version refers to the version of the BinderHub Helm Chart.
Available versions can be found
here [https://jupyterhub.github.io/helm-chart/#development-releases-binderhub].

	name and namespace may be different, but we recommend using
the same name and namespace to avoid confusion. We recommend
something descriptive and short, such as binder.

	If you run kubectl get pod --namespace=<namespace-from-above> you may
notice the binder pod in CrashLoopBackoff. This is expected, and will
be resolved in the next section.

This installation step will deploy both a BinderHub and a JupyterHub, but
they are not yet set up to communicate with each other. We’ll fix this in
the next step. Wait a few moments before moving on as the resources may take a
few minutes to be set up.

3.5. Connect BinderHub and JupyterHub

In the google console, run the following command to print the IP address
of the JupyterHub we just deployed.:

kubectl --namespace=<namespace-from-above> get svc proxy-public

Copy the IP address under EXTERNAL-IP. This is the IP of your
JupyterHub. Now, add the following lines to config.yaml file:

config:
 BinderHub:
 hub_url: http://<IP in EXTERNAL-IP>

Next, upgrade the helm chart to deploy this change:

helm upgrade <name-from-above> jupyterhub/binderhub --version=v0.1.0-... -f secret.yaml -f config.yaml

3.6. Try out your BinderHub Deployment

If the helm upgrade command above succeeds, it’s time to try out your
BinderHub deployment.

First, find the IP address of the BinderHub deployment by running the following
command:

kubectl --namespace=<namespace-from-above> get svc binder

Note the IP address in EXTERNAL-IP. This is your BinderHub IP address.
Type this IP address in your browser and a BinderHub should be waiting there
for you.

You now have a functioning BinderHub at the above IP address.

3.7. Increase your GitHub API limit

Note

Increasing the GitHub API limit is not strictly required, but is recommended
before sharing your BinderHub URL with users.

By default GitHub only lets you make 60 requests each hour. If you
expect your users to serve repositories hosted on GitHub, we recommend creating
an API access token to raise your API limit to 5000 requests an hour.

	Create a new token with default (check no boxes)
permissions here [https://github.com/settings/tokens/new].

	Store your new token somewhere secure (e.g. keychain, netrc, etc.)

	Update secret.yaml by entering the following:

config:
 GitHubRepoProvider:
 access_token: <insert_token_value_here>

This value will be loaded into GITHUB_ACCESS_TOKEN environment variable and
BinderHub will automatically use the token stored in this variable when making
API requests to GitHub. See the GitHub authentication documentation [https://developer.github.com/v3/guides/getting-started/#authentication] for
more information about API limits.

For next steps, see Debugging BinderHub and Tear down your Binder deployment.

 2. Set up the container registry
 4. Tear down your Binder deployment

 Previous
 Next

4. Tear down your Binder deployment

Deconstructing a Binder deployment can be a little bit confusing because
users may have caused new cloud containers to be created. It is important
to remember to delete each of these containers or else they will continue
to exist (and cost money!).

4.1. Contracting the size of your cluster

If you would like to shrink the size of your cluster, refer to the
Expanding and contracting the size of your cluster [https://zero-to-jupyterhub.readthedocs.io/en/latest/extending-jupyterhub.html#expanding-and-contracting-the-size-of-your-cluster]
section of the Zero to JupyterHub [https://zero-to-jupyterhub.readthedocs.io] documentation. Resizing the cluster to
zero nodes could be used if you wish to temporarily reduce the cluster (and
save costs) without deleting the cluster.

4.2. Deleting the cluster

To delete a Binder cluster, follow the instructions in the
Turning Off JupyterHub and Computational Resources [https://zero-to-jupyterhub.readthedocs.io/en/latest/turn-off.html]
section of the Zero to JupyterHub [https://zero-to-jupyterhub.readthedocs.io] documentation.

Important

Double check your cloud provider account to make sure all resources have been
deleted as expected. Double checking is a good practice and will help
prevent unwanted charges.

 3. Set up BinderHub
 Debugging BinderHub

 Previous
 Next

Debugging BinderHub

If BinderHub isn’t behaving as you’d expect, you’ll need to debug your
kubernetes deployment of the JupyterHub and BinderHub services. For a
guide on how to debug in Kubernetes, see the Zero to JupyterHub debugging
guide [https://zero-to-jupyterhub.readthedocs.io/en/latest/debug.html].

Changing the helm chart

If you make changes to your Helm Chart (e.g., while debugging), you should
run an upgrade on your Kubernetes deployment like so:

helm upgrade binder jupyterhub/binderhub --version=v0.1.0-397eb59 -f secret.yaml -f config.yaml

 4. Tear down your Binder deployment
 Customizing your BinderHub deployment

 Previous
 Next

Customizing your BinderHub deployment

Because BinderHub uses JupyterHub to manage all user sessions, you can
customize many aspects of the resources available to the user. This is
primarily done by modifications to your BinderHub’s Helm chart (config.yaml).

To make edits to your JupyterHub deplyoment via config.yaml, use
the following pattern:

binderhub:
 jupyterhub:
 <JUPYTERHUB-CONFIG-YAML>

For example, see this section of the mybinder.org Helm Chart [https://github.com/jupyterhub/mybinder.org-deploy/blob/staging/mybinder/values.yaml#L54].

For information on how to configure your JupyterHub deployment, see the
JupyterHub for Kubernetes Customization Guide [https://zero-to-jupyterhub.readthedocs.io/en/latest/#customization-guide].

 Debugging BinderHub
 BinderHub Deployments

 Previous
 Next

BinderHub Deployments

BinderHub is open-source technology that can be deployed anywhere that
Kubernetes is deployed. The Binder community hopes that it will be used
for many applications in research and education. As new organizations adopt
BinderHub, we’ll update this page in order to provide inspiration to others
who wish to do so.

If you or your organization has set up a BinderHub that isn’t listed here,
please open an issue [https://github.com/jupyterhub/binderhub/issues] on
our GitHub repository to discuss adding it!

GESIS - Leibniz-Institute for the Social Sciences

Deployed on bare-metal using kubeadm.

	Deployment repository [https://github.com/gesiscss/orc]

	BinderHub / JupyterHub links [https://notebooks.gesis.org/]

Pangeo - A community platform for big data geoscience

Pangeo-Binder allows users to perform computations using distributed
computing resources via the dask-kubernetes package. Read more about the
Pangeo project here. Pangeo-Binder is deployed on Google Cloud Platform using
Google Kubernetes Engine (GKE).

dask-kubernetes: https://dask-kubernetes.readthedocs.io/en/latest/
Pangeo project here: https://pangeo.io/

	Deployment repository [https://github.com/pangeo-data/pangeo-binder]

	BinderHub / JupyterHub links [http://binder.pangeo.io]

	Pangeo-Binder documentation [https://pangeo-binder.readthedocs.io/en/latest]

 Customizing your BinderHub deployment
 The BinderHub Architecture

 Previous
 Next

The BinderHub Architecture

This page provides a high-level overview of the technical pieces that make
up a BinderHub deployment.

Tools used by BinderHub

BinderHub connects several services together to provide on-the-fly creation
and registry of Docker images. It utilizes the following tools:

	A cloud provider such Google Cloud, Microsoft Azure, Amazon EC2, and
others

	Kubernetes to manage resources on the cloud

	Helm to configure and control Kubernetes

	Docker to use containers that standardize computing environments

	A BinderHub UI that users can access to specify GitHub repos they want
built

	BinderHub to generate Docker images using the URL of a GitHub repository

	A Docker registry (such as gcr.io) that hosts container images

	JupyterHub to deploy temporary containers for users

What happens when a user clicks a Binder link?

After a user clicks a Binder link, the following chain of events happens:

	BinderHub resolves the link to the repository.

	BinderHub determines whether a Docker image already exists for the repository at the latest
ref (git commit hash, branch, or tag).

	If the image doesn’t exist, BinderHub creates a build pod that uses
repo2docker [https://github.com/jupyter/repo2docker] to do the following:

	Fetch the repository associated with the link

	Build a Docker container image containing the environment specified in
configuration files [https://mybinder.readthedocs.io/en/latest/using.html#supported-configuration-files]
in the repository.

	Push that image to a Docker registry, and send the registry information
to the BinderHub for future reference.

	BinderHub sends the Docker image registry to JupyterHub.

	JupyterHub creates a Kubernetes pod for the user that serves the built Docker image
for the repository.

	JupyterHub monitors the user’s pod for activity, and destroys it after a short period of
inactivity.

A diagram of the BinderHub architecture

Here is a high-level overview of the components that make up BinderHub.

 BinderHub Deployments
 Event Logging

 Previous
 Next

Event Logging

Events are discrete & structured items emitted by
BinderHub when specific events happen. For example,
the binderhub.jupyter.org/launch event is emitted
whenever a Launch succeeds.

These events may be sent to a sink via handlers
from the python logging module.

Events vs Metrics

BinderHub also exposes prometheus [https://prometheus.io]
metrics. These are pre-aggregated, and extremely limited in
scope. They can efficiently answer questions like ‘how many launches
happened in the last hour?’ but not questions like ‘how
many times was this repo launched in the last 6 months?’.
Events are discrete and can be aggregated in many ways
during analysis. Metrics are aggregated at source, and this
limits what can be done with them during analysis. Metrics
are mostly operational, while events are for analytics.

What events to emit?

Since events have a lot more information than metrics do,
we should be careful about what events we emit. In general,
we should pose an explicit question that events can answer.

For example, to answer the question How many times has my
GitHub repo been launched in the last 6 months?, we would need
to emit an event every time a launch succeeds. To answer the
question how long did users spend on my repo?, we would need
to emit an event every time a user notebook is killed, along
with the lifetime length of the notebook.

Wikimedia’s EventLogging Guidelines [https://www.mediawiki.org/wiki/Extension:EventLogging/Guide#Posing_a_question]
contain a lot of useful info on how to approach adding more events.

 The BinderHub Architecture
 BinderHub API Documentation

 Previous
 Next

BinderHub API Documentation

Endpoint

There’s one API endpoint, which is:

/build/<provider>/<spec>

Even though it says build it is actually performs launch.

Provider

Provider is a supported provider, and spec is the specification for
the given provider.

Currently supported providers and their specs are:

	Provider

	prefix

	spec

	notes

	GitHub

	gh

	<user>/<repo>/<commit-sha-or-tag-or-branch>

	

	Git

	git

	<url-escaped-url>/<commit-sha>

	arbitrary HTTP git repos

	GitLab

	gl

	<url-escaped-namespace>/<commit-sha-or-tag-or-branch>

	

Next, construct an appropriate URL and send a request.

You’ll get back an Event
Stream [https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events].
It’s pretty much just a long-lived HTTP connection with a well known
JSON based data protocol. It’s one-way communication only (server to
client) and is straightforward to implement across multiple languages.

When the request is received, the following happens:

	Check if this image exists in our cached image registry. If so,
launch it.

	If it doesn’t exist in the image registry, we check if a build is
currently running. If it is, we attach to it and start streaming logs
from it to the user.

	If there is no build in progress, we start a build and start
streaming logs from it to the user.

	If the build succeeds, we contact the JupyterHub API and start
launching the server.

Events

This section catalogs the different events you might receive.

Failed

Emitted whenever a build or launch fails. You must close your
EventStream when you receive this event.

{'phase': 'failed', 'message': 'Reason for failure'}

Built

Emitted after the image has been built, before launching begins. This is
emitted in the start if the image has been found in the cache registry,
or after build completes successfully if we had to do a build.

{'phase': 'built', 'message': 'Human readable message', 'imageName': 'Full name of the image that is in the cached docker registry'}

Note that clients shouldn’t rely on the imageName field for anything
specific. It should be considered an internal implementation detail.

Waiting

Emitted when we started a build pod and are waiting for it to start.

{'phase': 'waiting', 'message': 'Human readable message'}

Building

Emitted during the actual building process. Direct stream of logs from
the build pod from repo2docker, in the same form as logs from a normal
docker build.

{'phase': 'building', 'message': 'Log message'}

Fetching

Emitted when fetching the repository to be built from its source
(GitHub, GitLab, wherever).

{'phase': 'fetching', 'message': 'log messages from fetching process'}

Pushing

Emitted when the image is being pushed to the cache registry. This
provides structured status info that could be in a progressbar. It’s
structured similar to the output of docker push.

{'phase': 'pushing', 'message': 'Human readable message', 'progress': {'layer1': {'current': <bytes-pushed>, 'total': <full-bytes>}, 'layer2': {'current': <bytes-pushed>, 'total': <full-bytes>}, 'layer3': "Pushed", 'layer4': 'Layer already exists'}}

Launching

When the repo has been built, and we’re in the process of waiting for
the hub to launch. This could end up succeeding and emitting a ‘ready’
event or failing and emitting a ‘failure’ event.

{'phase': 'launching', 'message': 'user friendly message'}

Ready

When your notebook is ready! You get a endpoint URL and a token used to
access it. You can access the notebook / API by using the token in one
of the ways the notebook accepts security
tokens [http://jupyter-notebook.readthedocs.io/en/stable/security.html]

{"phase": "ready", "message": "Human readable message", "url": "full-url-of-notebook-server", "token": "notebook-server-token"}

Heartbeat

In EventSource, all lines beginning with : are considered comments.
We send a :heartbeat every 30s to make sure that we can pass through
proxies without our request being killed.

 Event Logging
 Configuration and Source Code Reference

 Previous
 Next

Configuration and Source Code Reference

	app
	Module: binderhub.app

	BinderHub

	build
	Module: binderhub.build

	Build

	builder
	Module: binderhub.builder

	BuildHandler

	main
	Module: binderhub.main

	MainHandler

	ParameterizedMainHandler

	LegacyRedirectHandler

	registry
	Module: binderhub.registry

	DockerRegistry

	repoproviders
	Module: binderhub.repoproviders

	RepoProvider

	GitHubRepoProvider

 BinderHub API Documentation
 app

 Previous
 Next

app

Module: binderhub.app

BinderHub

 Configuration and Source Code Reference
 build

 Previous
 Next

build

Module: binderhub.build

Build

 app
 builder

 Previous
 Next

builder

Module: binderhub.builder

BuildHandler

 build
 main

 Previous
 Next

main

Module: binderhub.main

MainHandler

ParameterizedMainHandler

LegacyRedirectHandler

 builder
 registry

 Previous
 Next

registry

binderhub.repoproviders

Module: binderhub.registry

DockerRegistry

 main
 repoproviders

 Previous

repoproviders

Module: binderhub.repoproviders

RepoProvider

GitHubRepoProvider

 registry

Index

 _static/up.png

_static/images/architecture.png
BinderHub Architecture o Repo v

Image Registry
(high-level details)

Provider Provides environment images
REPO PULL IMAGE
Users REGISTER

Build Pod JupyterHub
build-<hash> hub-<hash>
IMAGE BUILD proxy-<hash>

'y : \

@& binder LAUNCH BUILD USER POD CREATE/ CULL PODS
IF REPO HASH REDIRECT USER REDIRECT IF STALE

REPO IS DIFFERENT

WEBSITE | INFO
SERVE |_SEND

; r'd

BinderHub Hocs

jupyter-<reponame>-<hash>
IMAGE PULL / USER SESSION

Data and 110 binder-<hash>

User flow

Trigger action Kubernetes Cluster

_static/ajax-loader.gif

_static/images/favicon.png

_static/images/logo.png

_static/comment.png

_static/comment-bright.png

_static/comment-close.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 BinderHub

 		
 Create your cloud resources

 		
 Setting up Kubernetes on Google Cloud

 		
 Install Helm

 		
 Installation

 		
 Initialization

 		
 Verify

 		
 Secure Helm

 		
 Set up the container registry

 		
 Set up Google Container Registry

 		
 Set up Docker Hub registry

 		
 Next step

 		
 Set up BinderHub

 		
 Preparing to install

 		
 Create secret.yaml file

 		
 If you are using gcr.io

 		
 If you are using Docker Hub

 		
 Create config.yaml

 		
 If you are using gcr.io

 		
 If you are using Docker Hub

 		
 If you are using a custom registry

 		
 Install BinderHub

 		
 Connect BinderHub and JupyterHub

 		
 Try out your BinderHub Deployment

 		
 Increase your GitHub API limit

 		
 Tear down your Binder deployment

 		
 Contracting the size of your cluster

 		
 Deleting the cluster

 		
 Debugging BinderHub

 		
 Changing the helm chart

 		
 Customizing your BinderHub deployment

 		
 BinderHub Deployments

 		
 GESIS - Leibniz-Institute for the Social Sciences

 		
 Pangeo - A community platform for big data geoscience

 		
 The BinderHub Architecture

 		
 Tools used by BinderHub

 		
 What happens when a user clicks a Binder link?

 		
 A diagram of the BinderHub architecture

 		
 Event Logging

 		
 Events vs Metrics

 		
 What events to emit?

 		
 BinderHub API Documentation

 		
 Endpoint

 		
 Provider

 		
 Events

 		
 Failed

 		
 Built

 		
 Waiting

 		
 Building

 		
 Fetching

 		
 Pushing

 		
 Launching

 		
 Ready

 		
 Heartbeat

 		
 Configuration and Source Code Reference

 		
 app

 		
 Module: binderhub.app

 		
 BinderHub

 		
 build

 		
 Module: binderhub.build

 		
 Build

 		
 builder

 		
 Module: binderhub.builder

 		
 BuildHandler

 		
 main

 		
 Module: binderhub.main

 		
 MainHandler

 		
 ParameterizedMainHandler

 		
 LegacyRedirectHandler

 		
 registry

 		
 Module: binderhub.registry

 		
 DockerRegistry

 		
 repoproviders

 		
 Module: binderhub.repoproviders

 		
 RepoProvider

 		
 GitHubRepoProvider

_static/favicon.png

_static/file.png

_static/down.png

_static/plus.png

_static/logo.png

_static/minus.png

_static/up-pressed.png

